My Report (&Account)

Discrete Mathematics Online Test


Correct Answer: 2 points | Wrong: -1 point
Grades: A* (100% score) | A (80%-99%) | B (60%-80%) | C (40%-60%) | D (0%-40%)

Here is the complete list of test quizzes on Discrete Mathematics.

1. A binary cycle space forms a ______ over the two element field.

Question 1 of 50

2. _________ is used to implement the Boolean functions.

Question 2 of 50

3. A single card is drawn from a standard deck of playing cards. What is the probability that the card is a face card provided that a queen is drawn from the deck of cards?

Question 3 of 50

4. Determine the solution for the recurrence relation an = 6an-1−8an-2 provided initial conditions a0=3 and a1=5.

Question 4 of 50

5. For any graph say G, Cayley graph is ______________

Question 5 of 50

6. In signed representation 5 is represented in binary as 0101.

Question 6 of 50

7. _______ characterizes the properties of distributive lattices.

Question 7 of 50

8. Let A be a set of k (k>0) elements. Which is larger between the number of binary relations (say, Nr) on A and the number of functions (say, Nf) from A to A?

Question 8 of 50

9. A ______ is a graph which has the same number of edges as its complement must have number of vertices congruent to 4m or 4m modulo 4(for integral values of number of edges).

Question 9 of 50

10. G is a simple undirected graph and some vertices of G are of odd degree. Add a node n to G and make it adjacent to each odd degree vertex of G. The resultant graph is ______

Question 10 of 50

11. What is the generating function for generating series 1, 2, 3, 4, 5,… ?

Question 11 of 50

12. Which of the following two sets are disjoint?

Question 12 of 50

13. The independent term of x is 80000 in the expansion of (3x+b/x)6, where b is a positive constant. What the value of b?

Question 13 of 50

14. Determine all possibilities for the solution set of the homogeneous system of 5 equations in 3 unknowns and the rank of the system is 3.

Question 14 of 50

15. What is the range of a function?

Question 15 of 50

16. For some number x, Floor(x) <= x <= Ceil(x).

Question 16 of 50

17. Which of the following case does not exist in complexity theory?

Question 17 of 50

18. If X is an idempotent nonsingular matrix, then X must be ___________

Question 18 of 50

19. If set A has 4 elements and B has 3 elements then set n(A X B) is?

Question 19 of 50

20. A square matrix A = [aij ]nxn, if aij = 0 for i > j then that matrix is known as _______

Question 20 of 50

21. If n(A)=20 and n(B)=30 and n(A U B) = 40 then n(A ∩ B) is?

Question 21 of 50

22. The contrapositive of p → q is the proposition of ____________

Question 22 of 50

23. Intersection of subgroups is a ___________

Question 23 of 50

24. The hexadecimal expansion of (177130)10 is ___________

Question 24 of 50

25. p ∨ q is logically equivalent to ________

Question 25 of 50

26. State whether the given statement is true or false.

1, 1, 1, 1, 1........ is a GP series.

Question 26 of 50

27. If a number is 22 x 31 x 50 and b is 21 x 31 x 51 then lcm of a, b is?

Question 27 of 50

28. Determine the number of essential prime implicants of the function f(a, b, c, d) = Σm(1, 3, 4, 8, 10, 13) + d(2, 5, 7, 12), where m denote the minterm and d denotes the don’t care condition.

Question 28 of 50

29. Time complexity of the binary search algorithm is constant.

Question 29 of 50

30. If f(x) = (x3 - 1) / (3x + 1) then f(x) is?

Question 30 of 50

31. What is the number of vertices in an undirected connected graph with 39 edges, 7 vertices of degree 2, 2 vertices of degree 5 and remaining of degree 6?

Question 31 of 50

32. A → (A ∨ q) is a __________

Question 32 of 50

33. How many ways can 8 prizes be given away to 7 students, if each student is eligible for all the prizes?

Question 33 of 50

34. A compound proposition that is neither a tautology nor a contradiction is called a ___________

Question 34 of 50

35. A 6-sided die is biased. Now, the numbers one to four are equally likely to happen, but five and six is thrice as likely to land face up as each of the other numbers. If X is the number shown on the uppermost face, determine the expected value of X when 6 is shown on the uppermost face.

Question 35 of 50

36. Amit must choose a seven-digit PIN number and each digit can be chosen from 0 to 9. How many different possible PIN numbers can Amit choose?

Question 36 of 50

37. A bag contains 25 balls such as 10 balls are red, 7 are white and 8 are blue. What is the minimum number of balls that must be picked up from the bag blindfolded (without replacing any of it) to be assured of picking at least one ball of each colour?

Question 37 of 50

38. In which cipher each letter of the plaintext is substituted by any other letter to form the cipher message?

Question 38 of 50

39. What is the one's complement of the number 1010110?

Question 39 of 50

40. A polygon with 12 sides can be triangulated into _______

Question 40 of 50

41. Let X be a n-square matrix such that Y = X + 8I. Which of the following property will exist?

Question 41 of 50

42. The tree elements are called __________

Question 42 of 50

43. For any function fof -1(x) is equal to?

Question 43 of 50

44. There are _________ numbers of Boolean functions of degree n.

Question 44 of 50

45. The quotient when 19 is divided by 6 is?

Question 45 of 50

46. Suppose a relation R = {(3, 3), (5, 5), (5, 3), (5, 5), (6, 6)} on S = {3, 5, 6}. Here R is known as _________

Question 46 of 50

47. The greatest common divisor of 0 and 5 is ___________

Question 47 of 50

48. In the given Geometric progression, '225' would be a term in it.

32, 256, 2048, 16384,.........,250.

Question 48 of 50

49. “Match will be played only if it is not a humid day.” The negation of this statement is?

Question 49 of 50

50. In which of the following problems recurrence relation holds?

Question 50 of 50


 

Topic wise Test Quizzes on Discrete Mathematics

Discrete Mathematics tests, quizzes, and exams are great ways to learn and test your Discrete Mathematics skills. Whether you’re a beginner or experienced, challenge and boost your confidence with our engaging online quizzes on Discrete Mathematics Basics, Propositional Logic, Sets, Functions, Sequence, Number Theory, Discrete Probability, Relations, Boolean Algebra and Group Theory. Start the Discrete Mathematics online test now!



Discrete Mathematics Certification Test

Discrete Mathematics Certification Test is a free certification exam. However, you need to score an A grade in each of the "Certification Level Tests 1 to 10" to be eligible to take part in this certification test. So, take all the "10 Tests" starting from Certification Level 1 upto Level 10, before taking the final Certification test.


Level 1 to 10 Tests:
Total Questions: 25, Total Time: 30 min, Correct Answer: 2 points, Wrong Answer: -1 point

Certification Test:
Total Questions: 50, Total Time: 1 hour, Correct Answer: 2 points, Wrong Answer: -1 point

Discrete Mathematics Internship Test

If you scored either Grade A* or Grade A in our Discrete Mathematics Internship Test, then you can apply for Internship at Sanfoundry in Discrete Mathematics.


Total Questions: 50, Total Time: 1 hour, Correct Answer: 2 points, Wrong Answer: -1 point

Discrete Mathematics Job Test

It is designed to test and improve your skills for a successful career, as well as to apply for jobs.


Total Questions: 50, Total Time: 1 hour, Correct Answer: 2 points, Wrong Answer: -1 point

Note: Before you get started on these series of online tests, you should practice our collection of 1000 MCQs on Discrete Mathematics .

Sanfoundry Scoring & Grading System

Sanfoundry tests and quizzes are designed to provide a real-time online exam experience. Here is what you need to know about them.

  • Scoring System: You get 2 points for each correct answer but lose 1 point for every wrong answer.
  • Grading System: Your grade depends on your final score and can be one of the following:

    • Grade A* - Genius (100%)
    • Grade A - Excellent (80% to 99%)
    • Grade B - Good (60% to 80%)
    • Grade C - Average (40% to 60%)
    • Grade D - Poor (0% to 40%)
advertisement
advertisement
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He lives in Bangalore, and focuses on development of Linux Kernel, SAN Technologies, Advanced C, Data Structures & Alogrithms. Stay connected with him at LinkedIn.

Subscribe to his free Masterclasses at Youtube & discussions at Telegram SanfoundryClasses.